Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731731

RESUMEN

Hydroponic cultivation of lettuce is an increasingly popular sustainable agricultural technique. However, Escherichia coli, a prevalent bacterium, poses significant concerns for the quality and safety of hydroponically grown lettuce. This study aimed to develop a growth model for E. coli and background microflora in hydroponically grown lettuce. The experiment involved inoculating hydroponically grown lettuce with E. coli and incubated at 4, 10, 15, 25, 30, 36 °C. Growth models for E. coli and background microflora were then developed using Origin 2022 (9.9) and IPMP 2013 software and validated at 5 °C and 20 °C by calculating root mean square errors (RMSEs). The result showed that E. coli was unable to grow at 4 °C and the SGompertz model was determined as the most appropriate primary model. From this primary model, the Ratkowsky square root model and polynomial model were derived as secondary models for E. coli-R168 and background microflora, respectively. These secondary models determined that the minimum temperature (Tmin) required for the growth of E. coli and background microflora in hydroponically grown lettuce was 6.1 °C and 8.7 °C, respectively. Moreover, the RMSE values ranged from 0.11 to 0.24 CFU/g, indicating that the models and their associated kinetic parameters accurately represented the proliferation of E. coli and background microflora in hydroponically grown lettuce.

2.
J Fungi (Basel) ; 10(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38667911

RESUMEN

In China, Fusarium pseudograminearum has emerged as a major pathogen causing Fusarium crown rot (FCR) and caused significant losses. Studies on the pathogen's properties, especially its mating type and trichothecene chemotypes, are critical with respect to disease epidemiology and food/feed safety. There are currently few available reports on these issues. This study investigated the species composition, mating type idiomorphs, and trichothecene genotypes of Fusarium spp. causing FCR in Henan, China. A significant shift in F. pseudograminearum-induced FCR was found in the present study. Of the 144 purified strains, 143 were F. pseudograminearum, whereas only 1 Fusarium graminearum was identified. Moreover, a significant trichothecene-producing capability of F. pseudograminearum strains from Henan was observed in this work. Among the 143 F. pseudograminearum strains identified, F. pseudograminearum with a 15ADON genotype was found to be predominant (133 isolates), accounting for 92.36% of all strains, followed by F. pseudograminearum with a 3ADON genotype, whereas only one NIV genotype strain was detected. Overall, a relatively well-balanced 1:1 ratio of the F. pseudograminearum population was found in Henan. To the best of our knowledge, this is the first study that has examined the Fusarium populations responsible for FCR across the Henan wheat-growing region.

3.
J Agric Food Chem ; 72(5): 2727-2740, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38289163

RESUMEN

The widespread bacterial contamination caused by foodborne pathogens has continuously driven the development of advanced and potent food antimicrobial agents. In this study, two novel antimicrobial peptides (AMPs) named KTA and KTR were obtained by modifying a natural AMP, Leg2, from chickpea storage protein legumin hydrolysates. They were further predicted to be stable hydrophobic cationic AMPs of α-helical structure with no hemolytic toxicity by several online servers. Moreover, the AMPs exerted superior antibacterial activity against two representative Staphylococcus aureus strains thanks to the increased hydrophobicity and positive charge, with minimum inhibition concentration value (4.74-7.41 µM) significantly lower than that of Leg2 (>1158.70 µM). Further, this study sought to elucidate the specific antimicrobial mechanism against Gram-positive bacteria. It was found that the electrostatic interactions of the AMPs with peptidoglycan were vital for peptide activity in combating Gram-positive bacteria. Subsequently, the cell membrane of S. aureus cells was irreversibly disrupted by increasing permeability and impairing membrane components, which led to the massive release of intracellular substances and eventual cell death. Overall, this work demonstrated that KTA and KTR were active against Gram-positive bacteria via peptidoglycan targeting and membrane-disruptive mechanisms and paved the way for expanding their application potential to alleviate food contamination.


Asunto(s)
Cicer , Staphylococcus aureus , Péptidos Antimicrobianos , Peptidoglicano/metabolismo , Membrana Celular/metabolismo , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
4.
Front Microbiol ; 12: 746632, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659182

RESUMEN

Bacillus cereus is a well-characterized human pathogen that produces toxins associated with diarrheal and emetic foodborne diseases. To investigate the possible transmission of B. cereus on lettuce farms in China and determine its enterotoxicity, (I) a total of 524 samples (lettuce: 332, soil: 69, water: 57, manure: 57, pesticide: 9) were collected from 46 lettuce farms in five Chinese provinces, (II) multilocus sequence typing (MLST) was used to classify B. cereus isolates and for trace analysis, and (III) the presence of toxin genes and enterotoxins (Hbl and Nhe) was detected in 68 strains. The results showed that one hundred and sixty-one lettuce samples (48.5%) tested positive for B. cereus at levels ranging from 10 to 5.3 × 104 CFU/g. Among the environmental sample categories surveyed, the highest positive rate was that of the pesticide samples at 55.6%, followed by soil samples at 52.2% and manure samples at 12.3%. Moreover, one hundred isolates of B. cereus yielded 68 different sequence types (STs) and were classified into five phylogenetic clades. Furthermore, Nhe toxin genes (nheA, nheB, nheC) were broadly distributed and identified in all 68 strains (100%), while Hbl toxin genes (hblA, hblC, hblD) were present in 61 strains (89.7%), entFM was detected in 62 strains (91.2%), and cytK was found in 29 strains (42.6%). All strains were negative for ces. As for the enterotoxin, Nhe was observed in all 68 isolates carrying nheB, while Hbl was present in 76.5% (52/68) of the strains harboring hblC. This study is the first report of possible B. cereus transmission and of its potential enterotoxicity on lettuce farms in China. The results showed that soil and pesticides are the main sources of B. cereus on lettuce farms in China, and the possible transmission routes are as follows: soil-lettuce, manure-lettuce, pesticide-lettuce, manure-soil-lettuce, and water-manure-soil-lettuce. Furthermore, the B. cereus isolates, whether from lettuce or the environment, pose a potential risk to health.

5.
Biomed Res Int ; 2021: 5604458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568492

RESUMEN

Disease caused by antibiotic-resistant Salmonella is a serious clinical problem that poses a great threat to public health. The present study is aimed at assessing differences in bacterial kinetics with different antibiotic resistance profiles under environmental stress and at developing microbial tolerance models in lettuce during storage from 4 to 36°C. The drug-resistance phenotypes of 10 Salmonella Typhimurium (S. Typhimurium) isolates were examined using the broth microdilution method. The results of 10 S. Typhimurium isolates in the suspensions showed that a slow trend towards reduction of drug-sensitive (DS) isolates in relation to the others though without statistical difference. Compared to DS S. Typhimurium SA62, greater bacterial reduction was observed in multidrug-resistant (MDR) S. Typhimurium HZC3 during lettuce storage at 4°C (P < 0.05). It was likely that a cross-response between antibiotic resistance and food-associated stress tolerance. The greater growth in lettuce at 12°C was observed for DS S. Typhimurium SA62 compared to MDR S. Typhimurium HZC3 and was even statistically different (P < 0.05), while no significant difference was observed for bacterial growth between MDR S. Typhimurium HZC3 and DS S. Typhimurium SA62 strains in lettuce storage from 16 to 36°C (P > 0.05). The goodness-of-fit indices indicated the Log-linear primary model provided a satisfactory fit to describe the MDR S. Typhimurium HZC3 and DS S. Typhimurium SA62 survival at 4°C. A square root secondary model could be used to describe the effect of temperature (12, 16, 28, and 36°C) on the growth rates of S. Typhimurium HZC3 (adj - R 2 = 0.91, RMSE = 0.06) and S. Typhimurium SA62 (adj - R 2 = 0.99, RMSE = 0.01) derived from the Huang primary model. It was necessary to pay attention to the tolerance of antibiotic resistant bacteria under environmental stress, and the generated models could provide parts of the input data for microbial risk assessment of Salmonella with different antibiotic resistance profile in lettuce.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Microbiana , Salmonella typhimurium/fisiología , Estrés Fisiológico , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Ambiente , Lactuca/microbiología , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Modelos Biológicos , Fenotipo , Reproducibilidad de los Resultados , Medición de Riesgo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/aislamiento & purificación , Estrés Fisiológico/efectos de los fármacos
6.
Front Microbiol ; 12: 782116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003011

RESUMEN

Listeria monocytogenes is a regulated foodborne pathogen that is known to cause listeriosis, a disease associated with high mortality rates in humans. Olive leaf extract (OLE) has been shown to act as a plant antimicrobial and inhibit the growth of pathogens, such as L. monocytogenes, although its mode of action has not been defined. To help identify the cellular mechanisms important for conveying these beneficial traits, RNA-Seq was used to study the transcriptome of L. monocytogenes upon exposure to a sublethal level of OLE. Results obtained from cells cultured both with and without OLE at two different time points (3.5-h and 24-h) revealed 661 genes that were differentially expressed. Of the differentially expressed genes (DEGs) identified, transcription was altered for 171 genes in response to the 3.5-h OLE treatment while 490 genes were altered in response to the 24-h OLE treatment. These DEGs included but were not limited to genes encoding for signal transduction, ATP-binding cassette (ABC) transporters, and the phosphotransferase system. Interestingly, several virulence-related genes were downregulated including an ABC transporter permease previously shown to negatively regulate biofilm formation, genes involved in flagella assembly and binding/entry into host cells as well as those regulating acid resistance suggesting that OLE may decrease the virulence potential of L. monocytogenes. Furthermore, quantitative reverse-transcription PCR was used to validate the data obtained via RNA-Seq. Our study provides insight into the mode of action of OLE treatment against L. monocytogenes and may aid in identifying synergetic strategies to inhibit L. monocytogenes in food.

7.
Colloids Surf B Biointerfaces ; 179: 87-93, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952019

RESUMEN

DNA extraction using magnetic particles (MPs) is a simple and rapid process. MPs directly combine with DNA, thereby facilitating removal of impurities in complex samples by magnetic attraction. Amino-modified magnetic nanoparticles (AMNPs) have been described as poor substrates for DNA extraction because it was difficult to desorb DNA from the AMNPs for downstream assays. In this study, we proposed to use the complexes of AMNPs and DNA directly as templates for PCR, thereby bypassing the difficulty of desorbing DNA from AMNPs. At first, we compared three distinct chemical modifications for magnetic nanoparticles (hydroxyl modified-, carboxyl modified-, and amino modified-magnetic nanoparticles) for the extraction of DNA under experimental conditions compatible with downstream assays (e.g., PCR). Under such conditions, we demonstrated that only the AMNPs had a powerful adsorption capability for DNA with 98% separation rate. We directly employed the complexes of AMNPs and extracted DNA as templates for PCR, which reduced the separation steps and minimized the loss of DNA. Notably, we minimized AMNPs-caused inhibition of the PCR by adding BSA to the PCR mixture. The AMNPs extraction was successfully applied for the detection of a genetically modified organism, species identification, and an allergen in a heterogenous mixture. The AMNPs-based extraction method is a simple and rapid process to extract DNA and even trace amounts of DNA for PCR-based analysis.


Asunto(s)
Aminas/química , ADN/aislamiento & purificación , Nanopartículas de Magnetita/química , Reacción en Cadena de la Polimerasa/métodos , Adsorción , Animales , Arachis/genética , Bovinos , Hongos/química , Gossypium/genética , Juglans/genética , Nanopartículas de Magnetita/ultraestructura , Plantas Modificadas Genéticamente , Albúmina Sérica Bovina/química , Dióxido de Silicio/química
8.
Front Microbiol ; 10: 770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024515

RESUMEN

Magnetic separation is an efficient method for target enrichment and elimination of inhibitors in the molecular detection systems for foodborne pathogens. In this study, we prepared magnetic capture probes by modifying oligonucleotides complementary to target sequences on the surface of amino-modified silica-coated magnetic nanoparticles and optimized the conditions and parameters of probe synthesis and hybridization. We innovatively put the complexes of magnetic capture probes and target sequences into qPCR without any need for denaturation and purification steps. This strategy can reduce manual steps and save time. We used the magnetic capture probes to separate invA mRNA from Salmonella in artificially contaminated milk samples. The detection sensitivity was 104 CFU/ml, which could be increased to 10 CFU/ml after a 12 h enrichment step. The developed method is robust enough to detect live bacteria in a complex environmental matrix.

9.
FEMS Microbiol Lett ; 366(2)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30629172

RESUMEN

The aim of this study was to determine whether sublethal concentrations of ceftriaxone could alter antibiotic resistance patterns in Salmonella strains. Three multiple antibiotic-resistant Salmonella isolates and the control strain ATCC 13076 were subjected to induction experiments by stepwise increases in sublethal concentrations of ceftriaxone. Sublethal levels of ceftriaxone induced antibiotic resistance but not control Salmonella isolates to ceftriaxone and to other antibiotics. After 100 generations in 2 months when the antibiotic stress was removed, only one isolate (Salmonella Typhimurium 11202) maintained the induction changes in antibiotic resistance phenotype (tetracycline from resistance to sensitive and ampicillin from sensitive to resistance). Consistent with its stable phenotypic resistance changes, expression of the tetracycline and ß-lactam resistance-related genes tetA and blaTEM were >10-fold down- and upregulated, respectively. Moreover, this strain had increased mRNA levels of efflux pump associated genes acrB and tolC and the SOS response regulator lexA and downregulation of the porin gene ompC. We found no overt changes in plasmid profiles before and after resistance induction. In all, sublethal concentrations of ceftriaxone induced alterations in Salmonella isolates to multiple antibiotics and some of them kept stable maintenance. The increased blaTEM expression may pose a potential danger for new generation ß-lactam antibiotics.


Asunto(s)
Antibacterianos/farmacología , Ceftriaxona/farmacología , Salmonella typhimurium/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
10.
Sci Rep ; 8(1): 14858, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291287

RESUMEN

Various additives can enhance the quality of PCR amplification, but these generally require considerable optimization to achieve peak performance. Here, we demonstrate that the use of thiol-modified primers can enhance both PCR sensitivity and yield. In experiments with V. parahaemolyticus genomic DNA, this primer modification enhances PCR sensitivity by more than 100-fold, with accompanying improvements in amplicon yield. Then, an artificial plasmid with the same primer binding regions and different internal amplification sequence was designed. The result showed that the amplification also be improved by using the same thiol-modified primers. It indicated the enhancement was not caused by the effect of the thiol-modified primers on the second structure of amplification sequence. Subsequent experiments demonstrate that the effects of this modification are potentially due to altered interaction between the primers and proteins in the reaction mixture. Amplification with thiol-modified primers was strongly inhibited by the presence of extraneous proteins relative to standard DNA primers, which indicates that thiol-modified primers may be inhibited due to interaction with these proteins. In contaminant-free reactions, however, the thiol-modified primers might interact more strongly with DNA polymerase, which could in turn improve PCR amplification.


Asunto(s)
Cartilla de ADN/química , ADN Bacteriano/análisis , Reacción en Cadena de la Polimerasa/métodos , Compuestos de Sulfhidrilo/química , Cartilla de ADN/genética , ADN Bacteriano/genética , Humanos , Vibriosis/microbiología , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/genética
11.
Foodborne Pathog Dis ; 15(6): 346-352, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29847740

RESUMEN

Salmonella enterica serovar Enteritidis is the leading global cause of salmonellosis. A total of 146 Salmonella Enteritidis isolates obtained from retail chicken products in Shanghai, China were characterized for their antimicrobial susceptibilities, virulence and antibiotic resistance gene profiles, and molecular subtypes using pulsed-field gel electrophoresis (PFGE). Approximately 42% (61/146) of the isolates were susceptible to all 13 antimicrobials tested. More than half of the isolates (50.70%) were resistant to ampicillin, 49.32% to sulfisoxazole, 17.12% to tetracycline, and 15.75% to doxycycline. Thirty (20.55%) isolates were resistant to three or more antimicrobials. The avrA, mgtC, and sopE virulence genes were identified in all isolates, while 97.2% and 92.4% were positive for bcfC and spvC genes, respectively. Genes associated with resistance to streptomycin (aadA), ß-lactams (blaTEM, blaCMY, blaSHV, and blaCTX), tetracycline (tetA and tetB), and sulfonamides (sulI, sulII, and sulIII) were detected among corresponding resistant isolates. A total of 41 PFGE patterns were identified from 77 antimicrobial resistance (AMR) isolates and were primarily grouped into seven clusters (A-G), each with 90% similarity. The majority of Salmonella Enteritidis isolates (63.63%, 49/77) shared the same PFGE cluster, indicating potential cross contamination during processing and cutting or working during retailing and marketing. A significantly (p < 0.05) lower percentage (<25%) of isolates belonging to clusters D and E were resistant to sulfisoxazole compared with those belonging to clusters A, B, C, F, and G (>80%), indicating that sulfisoxazole resistance might be associated with genetic content (PFGE profiles) of Salmonella Enteritidis. This study provides important and updated information about the baseline antimicrobial-resistant data for food safety risk assessment of Salmonella Enteritidis from retailed chicken in Shanghai, which is the first step for the development and implementation of China's AMR National Action Plan, and can be helpful for future surveillance activities to ensure the safety of the chicken supply.


Asunto(s)
Antiinfecciosos/farmacología , Pollos/microbiología , Farmacorresistencia Bacteriana/genética , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Infecciones por Salmonella/microbiología , Salmonella enteritidis/genética , Animales , China/epidemiología , Electroforesis en Gel de Campo Pulsado/veterinaria , Humanos , Pruebas de Sensibilidad Microbiana/veterinaria , Enfermedades de las Aves de Corral/epidemiología , Medición de Riesgo , Salmonelosis Animal/epidemiología , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/aislamiento & purificación , Salmonella enteritidis/patogenicidad , Virulencia/genética
12.
Front Microbiol ; 9: 598, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666612

RESUMEN

Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus, is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD450) of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST), and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM. Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs) and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59%) and ST25 (13%). Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus, non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus.

13.
Front Microbiol ; 8: 1611, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900418

RESUMEN

Listeria monocytogenes is a foodborne pathogen that causes listeriosis, which is a major public health concern due to the high fatality rate. LMOf2365_0442, 0443, and 0444 encode for fructose-specific EIIABC components of phosphotransferase transport system (PTS) permease that is responsible for sugar transport. In previous studies, in-frame deletion mutants of a putative fructose-specific PTS permease (LMOf2365_0442, 0443, and 0444) were constructed and analyzed. However, the virulence potential of these deletion mutants has not been studied. In this study, two in vitro methods were used to analyze the virulence potential of these L. monocytogenes deletion mutants. First, invasion assays were used to measure the invasion efficiencies to host cells using the human HT-29 cell line. Second, plaque forming assays were used to measure cell-to-cell spread in host cells. Our results showed that the deletion mutant ΔLMOf2365_0442 had reduced invasion and cell-to-cell spread efficiencies in human cell line compared to the parental strain LMOf2365, indicating that LMOf2365_0442 encoding for a fructose specific PTS permease IIA may be required for virulence in L. monocytogenes strain F2365. In addition, the gene expression levels of 15 virulence and stress-related genes were analyzed in the stationary phase cells of the deletion mutants using RT-PCR assays. Virulence-related gene expression levels were elevated in the deletion mutants ΔLMOf2365_0442-0444 compared to the wild type parental strain LMOf2365, indicating the down-regulation of virulence genes by this PTS permease in L. monocytogenes. Finally, stress-related gene clpC expression levels were also increased in all of the deletion mutants, suggesting the involvement of this PTS permease in stress response. Furthermore, these deletion mutants displayed the same pressure tolerance and the same capacity for biofilm formation compared to the wild-type parental strain LMOf2365. In summary, our findings suggest that the LMOf2365_0442 gene can be used as a potential target to develop inhibitors for new therapeutic and pathogen control strategies for public health.

14.
J Food Sci ; 79(9): M1745-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25146690

RESUMEN

Listeria monocytogenes is a foodborne pathogen that causes listeriosis. Paraquat can generate reactive oxygen species (ROS) in cells, which results in oxidative stress. It was first shown that 1 mM of paraquat inhibited the growth rate of a superoxide dismutase (sod)-deletion mutant (∆sod) generated from L. monocytogenes 4b G but not in the wild-type, and induced the expression of other resistance genes (kat, fri, perR, sigB, and recA) as well as sod in the wild type. Interestingly, without paraquat treatment the expression of all the 5 genes were repressed in ∆sod compared to the wild type, while the expression of recA triggering SOS response, a global response to DNA damage, was increased in ∆sod in the presence of 1 mM paraquat. Taken together, these results suggest that SOD plays a central role in oxidant defense of L. monocytogenes 4b G, and SOS probably significantly impacts ∆sod survival under oxidative stress.


Asunto(s)
Proteínas Bacterianas/genética , Listeria monocytogenes/genética , Oxidantes/farmacología , Estrés Oxidativo , Paraquat/farmacología , Superóxido Dismutasa/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/enzimología , Viabilidad Microbiana/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Transcripción Genética
15.
BMC Genomics ; 15: 627, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25056288

RESUMEN

BACKGROUND: Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China. Genome sequencing of the pathogen will provide important information for globally understanding its virulence mechanism. RESULTS: We report the genome sequences of a highly virulent C. lunata strain. Phylogenomic analysis indicates that C. lunata was evolved from Bipolaris maydis (Cochliobolus heterostrophus). The highly virulent strain has a high potential to evolve into other pathogenic stains based on analyses on transposases and repeat-induced point mutations. C. lunata has a smaller proportion of secreted proteins as well as B. maydis than entomopathogenic fungi. C. lunata and B. maydis have a similar proportion of protein-encoding genes highly homologous to experimentally proven pathogenic genes from pathogen-host interaction database. However, relative to B. maydis, C. lunata possesses not only many expanded protein families including MFS transporters, G-protein coupled receptors, protein kinases and proteases for transport, signal transduction or degradation, but also many contracted families including cytochrome P450, lipases, glycoside hydrolases and polyketide synthases for detoxification, hydrolysis or secondary metabolites biosynthesis, which are expected to be crucial for the fungal survival in varied stress environments. Comparative transcriptome analysis between a lowly virulent C. lunata strain and its virulence-increased variant induced by resistant host selection reveals that the virulence increase of the pathogen is related to pathways of toxin and melanin biosynthesis in stress environments, and that the two pathways probably have some overlaps. CONCLUSIONS: The data will facilitate a full revelation of pathogenic mechanism and a better understanding of virulence differentiation of C. lunata.


Asunto(s)
Ascomicetos/genética , Ascomicetos/fisiología , Perfilación de la Expresión Génica , Genoma Fúngico/genética , Zea mays/microbiología , Ascomicetos/citología , Ascomicetos/metabolismo , Transporte Biológico/genética , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genómica , Interacciones Huésped-Patógeno , Péptidos/química , Péptidos/metabolismo , Enfermedades de las Plantas/microbiología , Mutación Puntual , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética , Transposasas/metabolismo , Virulencia/genética , Zea mays/citología
16.
Int J Food Microbiol ; 163(2-3): 223-30, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562858

RESUMEN

The foodborne pathogen Listeria monocytogenes has the capability to persist on surfaces in food-processing environments, and the organism is resistant to environmental stresses. In this study, a Tn917 insertion mutant of L. monocytogenes 4b G showing reduced biofilm formation and sensitivity to oxidative stress was identified and characterized. The transposon insertion site within the gltB gene was identified by inverse PCR. The gltC gene is located upstream and is reported to be transcribed divergently from gltB. Mutants with deletions in gltB and gltC were constructed and both showed reduced biofilm formation and increased sensitivity to H2O2 compared to the wild-type. In the wild-type strain, gltB and gltC expressions were induced approximately 8-fold and 14-fold by quantitative RT-PCR, respectively, with exposure to H2O2, providing further evidence that their gene products may be involved in the response to oxidative stress. In addition, after the induction by H2O2 and compared with the wild-type, the gltB expression in ΔgltC and the gltC expression in ΔgltB were down-regulated about 4-fold (p<0.05) and 3-fold (p<0.05) respectively. These data demonstrate a possible mutual regulation between gltB and gltC expressions under oxidative stress conditions, partly explaining the similar oxidative stress responses of ΔgltB and ΔgltC. Furthermore, ΔgltB and ΔgltC exhibited decreased adherence to a glass surface compared to the wild-type, while the cell motility of wild-type and mutant strains was similar. It is hypothesized that some cell surface characteristics unrelated with cell motility may be introduced into the mutants by the inactivation of gltB or gltC, which might lead to the reduction in biofilm formation. We conclude that both gltB and gltC are involved in the biofilm formation as well as the oxidative stress tolerance in L. monocytogenes 4b G, by pathways that remain yet unclear.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Listeria monocytogenes/fisiología , Mutación/genética , Estrés Oxidativo/genética , Estrés Fisiológico/genética , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Oxidantes/farmacología
17.
PLoS One ; 7(10): e48467, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23119031

RESUMEN

Little is known about the molecular basis of biofilm formation in Listeria monocytogenes. The superoxide dismutase (SOD) of the deletion mutant of lm.G_1771 gene, which encodes for a putative ABC transporter permease, is highly expressed in biofilm. In this study, the sod gene deletion mutant Δsod, and double deletion mutant of the sod and lm. G_1771 genes Δ1771Δsod were used to investigate the role of SOD and its relationship to the expression of the putative ABC transporter permease in biofilm formation. Our results showed that the ability to form a biofilm was significantly reduced in the Δsod mutant and the Δ1771Δsod double mutant. Both Δsod and Δ1771Δsod mutants exhibited slow growth phenotypes and produced more reactive oxygen species (ROS). The growth was inhibited in the mutants by methyl viologen (MV, internal oxygen radical generator) treatment. In addition, the expression of one oxidation resistance gene (kat), two stress regulators encoding genes (perR and sigB), and one DNA repair gene (recA) were analyzed in both the wild-type L. monocytogenes 4b G and the deletion mutants by RT-qPCR. The expression levels of the four genes were increased in the deletion mutants when biofilms were formed. Taken together, our data indicated that SOD played an important role in biofilm formation through coping with the oxidant burden in deficient antioxidant defenses.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/genética , Superóxido Dismutasa/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Estrés Oxidativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...